organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinopropanoyl)-1,2,5,6-tetrahydropyridine-3-carboxylate

G. Aridoss,^a D. Gayathri,^b Keun Soo Park,^a Jong Tae Kim^a and Yeon Tae Jeong^a*

^aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and ^bInstitute of Structural Biology and Biophysics-2: Molecular Biophysics, Research Centre Jülich, D-52425 Jülich, Germany

Correspondence e-mail: ytjeong@pknu.ac.kr

Received 14 November 2009; accepted 18 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.117; data-to-parameter ratio = 18.5.

In the title compound, $C_{27}H_{32}N_2O_4S$, the thiomorpholine ring adopts a chair conformation and the tetrahydropyridine ring is in a distorted envelope conformation. The molecular structure is stabilized by an intramolecular $O-H\cdots O$ interaction and the crystal packing is stabilized by an intermolecular C- $H\cdots O$ interaction, generating an S(6) motif and a dimer of the type $R_2^2(18)$, respectively.

Related literature

For the synthesis and biological activity of 2,6-diarylpiperidin-4-one derivatives, see: Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan (2007); Aridoss, Balasubramanian, Parthiban & Kabilan (2007); Aridoss, Parthiban *et al.* (2009). For a related structure, see: Aridoss, Gayathri *et al.* (2009). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

 $\gamma = 106.819 \ (16)^{\circ}$

V = 1248.7 (7) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20$ mm

26182 measured reflections

5707 independent reflections

4543 reflections with $I > 2\sigma(I)$

 $\mu = 0.17 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int}=0.032$

Z = 2

Experimental

Crystal data

$C_{27}H_{32}N_2O_4S$
$M_r = 480.61$
Triclinic, P1
$a = 9.904 (3) \text{ Å}_{1}$
b = 11.400 (4) Å
c = 12.103 (4) Å
$\alpha = 93.908 \ (18)^{\circ}$
$\beta = 104.941 \ (15)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{min} = 0.952, T_{max} = 0.968$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 309 parameters $wR(F^2) = 0.117$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.21$ e Å $^{-3}$ 5707 reflections $\Delta \rho_{min} = -0.36$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H2···O3	0.82	1.85	2.560 (2)	144
$C24-H24B\cdots O3^{i}$	0.96	2.54	3.285 (2)	135

Symmetry code: (i) -x + 2, -y, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

GA and YTJ are grateful for the support provided by the second stage of the BK21 program, Republic of Korea.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2490).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Eur. J. Med. Chem. 42, 851–860.

- Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). *Med. Chem. Res.* 16, 188–204.
- Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, 01708–01709.
- Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). *Eur. J. Med. Chem.* 44, 577–592.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o3180-o3181 [doi:10.1107/S1600536809049186]

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinopropanoyl)-1,2,5,6-tetrahydropyridine-3carboxylate

G. Aridoss, D. Gayathri, K. S. Park, J. T. Kim and Y. T. Jeong

Comment

Our current research work is committed to find 2,6-diarylpiperidin-4-one based lead drug for the antimicrobial therapy and exploring the stereochemistry of its *N*-acyl derivatives (Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan, 2007; Aridoss, Balasubramanian, Parthiban & Kabilan, 2007; Aridoss, Parthiban *et al.*, 2009). Recently we have disclosed the crystal structure of ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6- tetrahydropyridin-3-carboxylate (Aridoss, Gayathri *et al.*, 2009), which crystallizes with two independent molecules per asymmetric unit. Here, the tetrahydropyridine ring adopts a half-chair conformation in one molecule and distorted envelope conformation in other molecule. Thus to understand the change in conformation of the above said compound upon nucleophilic substitution of thiomorpholine in place of bromine, crystal structure of the title compound is determined by X-ray diffraction study and discussed in this paper.

The sum of the angles at N1 [358.6 (3)°] and N2 [336.1 (3)°] are in accordance with sp^2 and sp^3 hybridization, respectively. The dihedral angle between the two phenyl rings attached to the pyridine moiety is 21.8 (1)°. The thiomorpholine ring adopts chair conformation with atoms C9 and C11 deviating by 0.758 (2) and -0.673 (2) Å, respectively, from the least squares plane defined by atoms N2/C8/S1/C10. The tetrahydropyridine ring adopts distorted envelope conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for thiomorpholine and tetrahydropyridine rings are $q_2 = 0.065$ (1), 0.394 (1) Å, $q_3 = 0.639$ (2), 0.294 (1) Å; $Q_T = 0.642$ (2), 0.491 (1) Å and $\theta = 5.7$ (1), 53.3 (2)°, respectively.

The molecular structure and the crystal packing are stabilized by O—H···O intramolecular and C—H···O intermolecular interactions, respectively, with atom O3 acting as bifurcated acceptor. In intramolecular interaction, atom O2 acts as a donor to O3 generating an S(6) motif and in intermolecular interaction, atom C24 acts as a donor to atom O3 at (2 - x, -y, -z), generating a dimer of the type $R_2^2(18)$.

Experimental

To a solution of thiomorpholine (1 equiv.) and dry K_2CO_3 in benzene, ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridin-3- carboxylate (1 equiv.; Aridoss, Gayathri *et al.*, 2009) in benzene was added slowly over a period of 15 minutes and refluxed over night. After the completion of reaction, the contents were poured into water and extracted twice with ethyl acetate. The combined organic extracts were then washed well with brine and dried over anhydrous sodium sulfate. This upon evaporation, column purification and subsequent recrystallization in distilled ethanol afforded fine white crystals appropriate for X-ray diffraction study.

Refinement

All H atoms were refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, and O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for the OH group.

Figures

Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The molecular packing of (I). For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.

Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinopropanoyl)- 1,2,5,6-tetrahydropyridine-3-carboxylate

Crystal data	
$C_{27}H_{32}N_2O_4S$	Z = 2
$M_r = 480.61$	$F_{000} = 512$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.278 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.904 (3) Å	Cell parameters from 5338 reflections
b = 11.400 (4) Å	$\theta = 2.3 - 27.8^{\circ}$
c = 12.103 (4) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\alpha = 93.908 \ (18)^{\circ}$	T = 293 K
$\beta = 104.941 \ (15)^{\circ}$	Block, colorless
$\gamma = 106.819 \ (16)^{\circ}$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
$V = 1248.7 (7) \text{ Å}^3$	

Data collection

. .

Bruker Kappa APEXII CCD diffractometer	5707 independent reflections
Radiation source: fine-focus sealed tube	4543 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$

T = 293 K	$\theta_{max} = 27.8^{\circ}$
ω and ϕ scan	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -12 \rightarrow 12$
$T_{\min} = 0.952, \ T_{\max} = 0.968$	$k = -14 \rightarrow 14$
26182 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 0.2715P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
5707 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
309 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.19148 (14)	0.27730 (12)	0.23357 (11)	0.0347 (3)
H1	1.2819	0.2883	0.2959	0.042*
C2	1.22176 (15)	0.24683 (13)	0.12043 (12)	0.0400 (3)
H2A	1.2817	0.3218	0.1013	0.048*
H2B	1.2769	0.1885	0.1293	0.048*
C3	1.08292 (15)	0.19255 (12)	0.02448 (11)	0.0371 (3)
C4	0.95026 (14)	0.14479 (11)	0.04268 (10)	0.0331 (3)
C5	0.93213 (13)	0.13505 (11)	0.16238 (10)	0.0310 (3)
H5	0.8828	0.0472	0.1626	0.037*
C6	1.10345 (14)	0.08311 (12)	0.31764 (10)	0.0337 (3)
C7	1.25989 (15)	0.11016 (13)	0.39709 (11)	0.0357 (3)
H7	1.3274	0.1358	0.3501	0.043*

C8	1.45086 (15)	0.27218 (15)	0.54032 (13)	0.0478 (4)
H8A	1.4994	0.2871	0.4801	0.057*
H8B	1.4889	0.2154	0.5853	0.057*
C9	1.4863 (2)	0.39292 (17)	0.61776 (16)	0.0611 (4)
H9A	1.4450	0.4485	0.5733	0.073*
H9B	1.5924	0.4315	0.6454	0.073*
C10	1.2279 (2)	0.29267 (17)	0.65584 (14)	0.0574 (4)
H10A	1.1697	0.2655	0.7082	0.069*
H10B	1.1886	0.3499	0.6126	0.069*
C11	1.21338 (17)	0.18191 (15)	0.57289 (12)	0.0457 (3)
H11A	1.2508	0.1239	0.6163	0.055*
H11B	1.1099	0.1405	0.5329	0.055*
C12	1.15095 (14)	0.39523 (12)	0.24545 (11)	0.0358 (3)
C13	1.12638 (16)	0.43177 (14)	0.34780 (13)	0.0448 (3)
H13	1.1291	0.3814	0.4051	0.054*
C14	1.0980 (2)	0.54136 (16)	0.36610 (16)	0.0577 (4)
H14	1.0809	0.5643	0.4352	0.069*
C15	1.0948 (2)	0.61727 (16)	0.28258 (18)	0.0640 (5)
H15	1.0773	0.6922	0.2955	0.077*
C16	1.1173 (2)	0.58217 (16)	0.18069 (17)	0.0608 (4)
H16	1.1135	0.6327	0.1235	0.073*
C17	1.14591 (18)	0.47184 (13)	0.16176 (13)	0.0471 (3)
H17	1.1618	0.4490	0.0921	0.057*
C18	0.83851 (13)	0.20571 (12)	0.19968 (11)	0.0332 (3)
C19	0.80193 (16)	0.18358 (14)	0.30119 (12)	0.0425 (3)
H19	0.8339	0.1262	0.3429	0.051*
C20	0.71920 (19)	0.24515 (16)	0.34109 (15)	0.0547 (4)
H20	0.6955	0.2294	0.4093	0.066*
C21	0.6719 (2)	0.32964 (16)	0.28039 (16)	0.0597 (4)
H21	0.6165	0.3720	0.3075	0.072*
C22	0.7062 (2)	0.35187 (16)	0.17939 (16)	0.0555 (4)
H22	0.6733	0.4090	0.1379	0.067*
C23	0.78906 (16)	0.29013 (13)	0.13889 (12)	0.0423 (3)
H23	0.8116	0.3057	0.0702	0.051*
C24	1.2782 (2)	-0.00907(15)	0.43919 (14)	0.0524 (4)
H24A	1.3719	0.0096	0.4965	0.079*
H24B	1.2733	-0.0661	0.3751	0.079*
H24C	1.2008	-0.0457	0.4725	0.079*
C25	0.82265 (15)	0.08996 (12)	-0.05693 (11)	0.0369 (3)
C26	0.56361 (17)	-0.00482 (15)	-0.12584 (13)	0.0494 (4)
H26A	0.4891	-0.0668	-0.1038	0.059*
H26B	0.5820	-0.0430	-0.1922	0.059*
C27	0.5094 (2)	0.1005 (2)	-0.15733 (19)	0.0757 (6)
H27A	0.4967	0.1411	-0.0904	0.114*
H27B	0.4167	0.0701	-0.2167	0.114*
H27C	0.5797	0.1585	-0.1852	0.114*
N1	1.07728 (11)	0.16791 (10)	0.24818 (9)	0.0326 (2)
N2	1.29325 (11)	0.21563 (10)	0.48737 (9)	0.0336 (2)
01	1.00568 (11)	-0.01107 (9)	0.31843 (9)	0.0454 (2)
	× /	(-)		

O2	1.10662 (12)	0.19398 (11)	-0.07897	7 (9)	0.052	0 (3)	
H2	1.0283	0.1614		-0.1296		0.078	*	
03	0.82742 (12)	0.08937 (11)	-0.15678	8 (8)	0.053	9 (3)	
04	0.69839 (10)	0.03850 (9)		-0.03050) (8)	0.040	6 (2)	
S1	1.41530 (6)	0.37181 (4)		0.73873	(4)	0.062	61 (15)	
Atomic displacer	nent parameters ($(Å^2)$						
	U^{11}	<i>U</i> ²²	U^{33}		U^{12}		U ¹³	U^{23}
C1	0.0296 (6)	0.0326 (6)	0.0350 (5)	0.0045 (5)		0.0035 (5)	0.0060 (5)
C2	0.0337 (7)	0.0390 (7)	0.0460 (8	8)	0.0076 (5)		0.0137 (6)	0.0064 (6)
C3	0.0431 (7)	0.0354 (7)	0.0351 (7)	0.0139 (6)		0.0140 (6)	0.0047 (5)
C4	0.0358 (6)	0.0322 (6)	0.0299 (6)	0.0116 (5)		0.0070 (5)	0.0025 (5)
C5	0.0288 (6)	0.0298 (6)	0.0289 (6)	0.0052 (5)		0.0041 (5)	0.0032 (5)
C6	0.0370 (7)	0.0346 (7)	0.0286 (6)	0.0105 (5)		0.0090 (5)	0.0055 (5)
C7	0.0362 (7)	0.0409 (7)	0.0306 (6)	0.0146 (5)		0.0078 (5)	0.0069 (5)
C8	0.0320 (7)	0.0619 (10)	0.0434 (8	8)	0.0100 (7)		0.0079 (6)	0.0019 (7)
C9	0.0495 (9)	0.0547 (10)	0.0591 (10)	-0.0010 (8)		0.0049 (8)	-0.0027 (8)
C10	0.0655 (11)	0.0708 (11)	0.0464 (9))	0.0303 (9)		0.0250 (8)	0.0069 (8)
C11	0.0438 (8)	0.0530 (9)	0.0390 (7)	0.0094 (7)		0.0169 (6)	0.0063 (6)
C12	0.0307 (6)	0.0302 (6)	0.0368 (7)	0.0014 (5)		0.0032 (5)	0.0031 (5)
C13	0.0459 (8)	0.0404 (7)	0.0407 (7)	0.0057 (6)		0.0097 (6)	0.0036 (6)
C14	0.0615 (10)	0.0485 (9)	0.0599 (10)	0.0124 (8)		0.0215 (8)	-0.0046 (8)
C15	0.0691 (12)	0.0387 (9)	0.0863 (13)	0.0184 (8)		0.0259 (10)	0.0066 (8)
C16	0.0725 (11)	0.0420 (9)	0.0709 (11)	0.0196 (8)		0.0213 (9)	0.0216 (8)
C17	0.0546 (9)	0.0389 (8)	0.0446 (8	8)	0.0112 (7)		0.0125 (7)	0.0101 (6)
C18	0.0293 (6)	0.0327 (6)	0.0313 (5)	0.0049 (5)		0.0051 (5)	0.0003 (5)
C19	0.0429 (7)	0.0467 (8)	0.0379 (*	7)	0.0131 (6)		0.0130 (6)	0.0062 (6)
C20	0.0576 (10)	0.0613 (10)	0.0484 (9	9)	0.0173 (8)		0.0248 (8)	0.0013 (7)
C21	0.0619 (10)	0.0562 (10)	0.0693 (11)	0.0254 (8)		0.0285 (9)	-0.0019 (8)
C22	0.0611 (10)	0.0474 (9)	0.0641 (10)	0.0279 (8)		0.0167 (8)	0.0086 (8)
C23	0.0455 (8)	0.0413 (7)	0.0403 (7)	0.0150 (6)		0.0117 (6)	0.0060 (6)
C24	0.0642 (10)	0.0485 (9)	0.0429 (8	8)	0.0280 (8)		0.0018 (7)	0.0064 (7)
C25	0.0422 (7)	0.0358 (7)	0.0311 (6	6)	0.0146 (6)		0.0065 (5)	0.0017 (5)
C26	0.0395 (8)	0.0513 (9)	0.0411 (8	3)	0.0069 (6)		-0.0052 (6)	-0.0004 (6)
C27	0.0595 (11)	0.0746 (13)	0.0794 (13)	0.0234 (10)		-0.0081 (10)	0.0230 (11)
N1	0.0296 (5)	0.0308 (5)	0.0314 (5)	0.0059 (4)		0.0030 (4)	0.0054 (4)
N2	0.0291 (5)	0.0398 (6)	0.0302 (5)	0.0091 (4)		0.0077 (4)	0.0055 (4)
01	0.0431 (5)	0.0415 (5)	0.0446 (5)	0.0043 (4)		0.0088 (4)	0.0161 (4)
O2	0.0516 (6)	0.0649 (7)	0.0388 (5)	0.0120 (5)		0.0204 (5)	0.0043 (5)
O3	0.0537 (6)	0.0723 (8)	0.0297 (5)	0.0162 (6)		0.0084 (4)	0.0000 (5)
O4	0.0352 (5)	0.0447 (5)	0.0327 (5)	0.0077 (4)		0.0010 (4)	0.0018 (4)
S1	0.0835 (3)	0.0571 (3)	0.0407 (2	2)	0.0286 (2)		0.0031 (2)	-0.00484 (18)

Geometric parameters (Å, °)

C1—N1	1.4773 (16)	C12—C13	1.382 (2)
C1—C2	1.5142 (19)	C13—C14	1.373 (2)
C1—C12	1.5182 (19)	C13—H13	0.9300

C1—H1	0.9800	C14—C15	1.375 (3)
C2—C3	1.4861 (19)	C14—H14	0.9300
C2—H2A	0.9700	C15—C16	1.363 (3)
C2—H2B	0.9700	С15—Н15	0.9300
C3—O2	1.3323 (16)	C16—C17	1.384 (2)
C3—C4	1.3501 (19)	С16—Н16	0.9300
C4—C25	1.4477 (18)	С17—Н17	0.9300
C4—C5	1.5126 (17)	C18—C23	1.375 (2)
C5—N1	1.4665 (16)	C18—C19	1.3867 (19)
C5—C18	1.5202 (18)	C19—C20	1.374 (2)
С5—Н5	0.9800	С19—Н19	0.9300
C6—O1	1.2227 (16)	C20—C21	1.367 (3)
C6—N1	1.3609 (17)	C20—H20	0.9300
C6—C7	1.5281 (18)	C21—C22	1.371 (2)
C7—N2	1.4675 (18)	C21—H21	0.9300
C7—C24	1.526 (2)	C22—C23	1.380 (2)
С7—Н7	0.9800	C22—H22	0.9300
C8—N2	1.4520 (18)	С23—Н23	0.9300
C8—C9	1.507 (2)	C24—H24A	0.9600
C8—H8A	0.9700	C24—H24B	0.9600
С8—Н8В	0.9700	C24—H24C	0.9600
C9—S1	1.782 (2)	C25—O3	1.2212 (17)
С9—Н9А	0.9700	C25—O4	1.3310 (17)
С9—Н9В	0.9700	C26—O4	1.4505 (16)
C10—C11	1.507 (2)	C26—C27	1.485 (3)
C10—S1	1.792 (2)	C26—H26A	0.9700
C10—H10A	0.9700	C26—H26B	0.9700
C10—H10B	0.9700	С27—Н27А	0.9600
C11—N2	1.4647 (17)	С27—Н27В	0.9600
C11—H11A	0.9700	С27—Н27С	0.9600
C11—H11B	0.9700	O2—H2	0.8200
C12—C17	1.382 (2)		
N1—C1—C2	107.66 (11)	C12—C13—H13	119.5
N1—C1—C12	112.16 (11)	C13—C14—C15	120.20 (16)
C2—C1—C12	114.82 (11)	C13—C14—H14	119.9
N1—C1—H1	107.3	C15—C14—H14	119.9
C2—C1—H1	107.3	C16-C15-C14	119.63 (16)
C12—C1—H1	107.3	C16—C15—H15	120.2
C3—C2—C1	111.58 (11)	C14—C15—H15	120.2
С3—С2—Н2А	109.3	C15—C16—C17	120.40 (16)
C1—C2—H2A	109.3	C15—C16—H16	119.8
С3—С2—Н2В	109.3	C17—C16—H16	119.8
C1—C2—H2B	109.3	C12—C17—C16	120.56 (15)
H2A—C2—H2B	108.0	С12—С17—Н17	119.7
O2—C3—C4	125.09 (13)	С16—С17—Н17	119.7
O2—C3—C2	112.09 (12)	C23—C18—C19	118.54 (13)
C4—C3—C2	122.79 (12)	C23—C18—C5	123.75 (12)
C3—C4—C25	118.29 (12)	C19—C18—C5	117.71 (12)
C3—C4—C5	122.64 (11)	C20—C19—C18	120.98 (14)

C25—C4—C5	118.79 (11)	С20—С19—Н19	119.5
N1—C5—C4	109.82 (10)	С18—С19—Н19	119.5
N1—C5—C18	110.60 (10)	C21—C20—C19	119.88 (15)
C4—C5—C18	116.73 (10)	С21—С20—Н20	120.1
N1—C5—H5	106.3	С19—С20—Н20	120.1
C4—C5—H5	106.3	C20—C21—C22	119.83 (15)
C18—C5—H5	106.3	C20—C21—H21	120.1
O1—C6—N1	121.77 (12)	C22—C21—H21	120.1
O1—C6—C7	120.49 (12)	C21—C22—C23	120.49 (15)
N1—C6—C7	117.73 (11)	C21—C22—H22	119.8
N2—C7—C24	116.11 (11)	С23—С22—Н22	119.8
N2—C7—C6	109.40 (10)	C18—C23—C22	120.26 (14)
C24—C7—C6	109.39 (12)	C18—C23—H23	119.9
N2—C7—H7	107.2	С22—С23—Н23	119.9
С24—С7—Н7	107.2	C7—C24—H24A	109.5
С6—С7—Н7	107.2	C7—C24—H24B	109.5
N2—C8—C9	111.80 (13)	H24A—C24—H24B	109.5
N2—C8—H8A	109.3	C7—C24—H24C	109.5
С9—С8—Н8А	109.3	H24A—C24—H24C	109.5
N2—C8—H8B	109.3	H24B—C24—H24C	109.5
С9—С8—Н8В	109.3	O3—C25—O4	122.39 (12)
H8A—C8—H8B	107.9	O3—C25—C4	123.53 (13)
C8—C9—S1	112.18 (12)	O4—C25—C4	114.08 (11)
С8—С9—Н9А	109.2	O4—C26—C27	110.13 (13)
S1—C9—H9A	109.2	O4—C26—H26A	109.6
С8—С9—Н9В	109.2	C27—C26—H26A	109.6
S1—C9—H9B	109.2	O4—C26—H26B	109.6
Н9А—С9—Н9В	107.9	С27—С26—Н26В	109.6
C11—C10—S1	112.47 (12)	H26A—C26—H26B	108.1
C11-C10-H10A	109.1	С26—С27—Н27А	109.5
S1-C10-H10A	109.1	С26—С27—Н27В	109.5
С11—С10—Н10В	109.1	H27A—C27—H27B	109.5
S1-C10-H10B	109.1	С26—С27—Н27С	109.5
H10A—C10—H10B	107.8	H27A—C27—H27C	109.5
N2-C11-C10	112.61 (13)	H27B—C27—H27C	109.5
N2—C11—H11A	109.1	C6—N1—C5	117.56 (10)
C10-C11-H11A	109.1	C6—N1—C1	125.05 (11)
N2—C11—H11B	109.1	C5—N1—C1	115.92 (10)
C10—C11—H11B	109.1	C8—N2—C11	112.46 (11)
H11A—C11—H11B	107.8	C8—N2—C7	111.81 (11)
C17—C12—C13	118.22 (14)	C11—N2—C7	111.79 (11)
C17—C12—C1	123.25 (13)	С3—О2—Н2	109.5
C13—C12—C1	118.41 (12)	C25—O4—C26	116.77 (11)
C14—C13—C12	120.97 (15)	C9—S1—C10	95.98 (8)
C14—C13—H13	119.5		
N1—C1—C2—C3	48.04 (14)	C18—C19—C20—C21	0.0 (2)
C12—C1—C2—C3	-77.64 (14)	C19—C20—C21—C22	0.5 (3)
C1—C2—C3—O2	164.35 (11)	C20—C21—C22—C23	-0.4 (3)
C1—C2—C3—C4	-17.41 (18)	C19—C18—C23—C22	0.6 (2)

O2—C3—C4—C25	0.3 (2)	C5-C18-C23-C22	-179.08 (13)
C2—C3—C4—C25	-177.71 (12)	C21—C22—C23—C18	-0.2 (2)
O2—C3—C4—C5	174.15 (12)	C3—C4—C25—O3	-3.3 (2)
C2—C3—C4—C5	-3.9 (2)	C5—C4—C25—O3	-177.40 (13)
C3—C4—C5—N1	-7.76 (17)	C3—C4—C25—O4	176.05 (12)
C25—C4—C5—N1	166.06 (11)	C5—C4—C25—O4	1.95 (17)
C3—C4—C5—C18	119.13 (14)	O1—C6—N1—C5	-8.07 (18)
C25—C4—C5—C18	-67.04 (15)	C7—C6—N1—C5	172.90 (10)
O1—C6—C7—N2	-110.36 (14)	O1—C6—N1—C1	-173.66 (12)
N1—C6—C7—N2	68.68 (14)	C7—C6—N1—C1	7.31 (18)
O1—C6—C7—C24	17.86 (18)	C4—C5—N1—C6	-123.91 (12)
N1-C6-C7-C24	-163.10 (12)	C18—C5—N1—C6	105.82 (13)
N2-C8-C9-S1	64.32 (17)	C4—C5—N1—C1	42.99 (14)
S1—C10—C11—N2	-61.25 (16)	C18—C5—N1—C1	-87.27 (13)
N1-C1-C12-C17	-125.18 (14)	C2-C1-N1-C6	101.21 (14)
C2-C1-C12-C17	-1.86 (18)	C12—C1—N1—C6	-131.53 (13)
N1-C1-C12-C13	58.79 (15)	C2-C1-N1-C5	-64.58 (14)
C2-C1-C12-C13	-177.89 (12)	C12—C1—N1—C5	62.67 (14)
C17—C12—C13—C14	-0.1 (2)	C9—C8—N2—C11	-63.15 (17)
C1-C12-C13-C14	176.10 (14)	C9—C8—N2—C7	170.12 (13)
C12-C13-C14-C15	-0.5 (3)	C10-C11-N2-C8	61.90 (17)
C13—C14—C15—C16	1.1 (3)	C10-C11-N2-C7	-171.36 (12)
C14-C15-C16-C17	-1.1 (3)	C24—C7—N2—C8	75.03 (16)
C13—C12—C17—C16	0.2 (2)	C6—C7—N2—C8	-160.59 (11)
C1-C12-C17-C16	-175.88 (14)	C24—C7—N2—C11	-52.06 (16)
C15-C16-C17-C12	0.5 (3)	C6—C7—N2—C11	72.31 (14)
N1-C5-C18-C23	116.73 (13)	O3—C25—O4—C26	-7.80 (19)
C4—C5—C18—C23	-9.78 (18)	C4—C25—O4—C26	172.84 (11)
N1-C5-C18-C19	-62.99 (15)	C27—C26—O4—C25	-81.20 (18)
C4—C5—C18—C19	170.50 (11)	C8—C9—S1—C10	-55.24 (14)
C23-C18-C19-C20	-0.6 (2)	C11—C10—S1—C9	53.83 (14)
C5-C18-C19-C20	179.18 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2…O3	0.82	1.85	2.560 (2)	144
C24—H24B···O3 ⁱ	0.96	2.54	3.285 (2)	135
Symmetry codes: (i) $-x+2, -y, -z$.				

Fig. 1

Fig. 2

